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Abstract

We have performed simulations using a 3-D global chemistry-transport model
(TM4 AMMA) to investigate the effect that continental transport of biomass burning
plumes have on regional air quality over Equatorial Africa during the West African Mon-
soon (WAM) period in 2006. By performing a number of sensitivity studies we show5

that biomass burning emissions from southern Africa (0–40◦ S) have a strong influence
on the composition of the tropical troposphere around Equatorial Africa and the out-
flow regions towards the west, especially between 10◦ S–10◦ N. By altering both the
temporal distribution and the injection heights used for introducing the biomass burn-
ing emissions we show that changes in temporal distribution are much more important10

in determining the daily variability of trace gas species over the southern Atlantic than
boundary layer processes. When adopting the GFEDv2 emission inventory the max-
imum concentrations in CO and O3 occur between 0–5◦ S, which coincides with the
position of the southern African Easterly Jet. By comparing co-located model output
with in-situ measurements made during the AMMA measurement campaign we show15

that the model fails to capture the tropospheric profile of CO in the burning region, as
well as the “extreme” concentrations of both CO and O3 seen around 600–700 hPa
above Equatorial Africa. Trajectory analysis show that the 6-hourly ECMWF meteoro-
logical fields do not allow transport of biomass burning plumes from southern Africa
directly into the mid-troposphere around ∼6◦ N. Similar trajectory simulations repeated20

using an updated meteorological dataset, which assimilates additional measurement
data for the African region, shows markedly different origins for pollution events and
reveals that the performance of the CTM is heavily constrained by the ECMWF opera-
tional analysis data which drives the model.
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1 Introduction

The emission of gaseous and particulate matter from both human induced biomass
burning (BB) and (natural) wildfires has been identified as the most dominant source
of CO, NOx (=NO+ NO2), Non-Methane Hydrocarbons (NMHCs), SO2 and aerosol
particles in sparsely populated regions (Crutzen and Andreae, 1990; Andreae and Mer-5

let, 2001). A dominant region where such fires occur is the African continent (e.g. Jain,
2007), where the seasonality of the burning practices results in two distinctive emission
phases, one occurring in the Northern Hemisphere (NH), between 0–20◦ N, and one
in the Southern Hemisphere (SH), between 5–20◦ S. These typically occur between
December to March and June to September, for the NH and SH, respectively. More-10

over, the intensity of fires and the total area burnt exhibit a large degree of interannual
variability with respect to the seasonal cycle (e.g. Giglio et al., 2006; van der Werf et
al., 2006). This introduces a certain degree of uncertainty when assessing the total
regional emissions from such events for any particular year. As climate changes, such
events are likely to increase in both intensity and frequency in Africa (Intergovernmen-15

tal Panel on Climate Change, 2007). Hence, the importance of such emission sources
for the tropics will potentially be enhanced in the coming decades providing motivation
to investigate whether large-scale atmospheric models can capture the variability in tro-
pospheric composition which has been observed in the African region (e.g. Sauvage
et al., 2007).20

For long-lived trace gases such as CO, pyrogenic convection into the free tropo-
sphere results in polluted air-masses traveling long distances (e.g. Staudt et al., 2002;
Edwards et al., 2006), where signatures of such events have previously been observed
in measurements made around Africa (e.g. Muhle et al., 2002; Hobbs et al., 2003). An-
other important trace species linked to BB is tropospheric ozone (O3), which is formed25

via the photochemical oxidation of NO2 released during burning events. For instance,
it has previously been shown that enhanced concentrations of tropospheric O3 in the
lower atmosphere over Equatorial Africa (EA) during July can be attributed directly to
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emissions from fires near the equator (Sauvage et al., 2005; Sauvage et al., 2007).
Moreover, recent aircraft (Reeves et al., 2010; Andrés-Hernàndez et al., 2009) and
ozone sonde measurements (Thouret et al., 2009) taken as part of the African Mon-
soon Multidisciplinary Analysis (AMMA, www.amma-eu.org; Redelsperger et al., 2006)
have also shown enhancements in both CO and O3 at around 4–5 km, especially dur-5

ing August 2006 near the coast of Nigeria, Benin and Ghana. As part of AMMA, these
enhancements have recently been found to be influenced by BB activity in southern
Africa (Real et al., 2009), as well as other emission sources in the Guinea region (An-
cellet et al., 2009). However, the transport of such polluted air-masses towards EA is
not continuous during the WAM, as demonstrated by Mari et al. (2008). They found10

that during the “break” phase of the southern African Easterly Jet (AEJ-S) between
the 3–8 August 2006, polluted air-masses were directed back over the continent rather
than westwards out over the tropical Atlantic Ocean.

A recent intercomparison study involving a set of global CTMs has shown that several
large-scale models have difficulty in capturing the correct distribution of tropospheric15

O3 over EA during the WAM (Williams et al., 2010) as compared with both ozone
sonde profiles and a composite of aircraft measurements made during AMMA. The
ability of the CTMs to capture the continental transport of such pollutants is depen-
dent on various model components, such as the chemical mechanism, the convective
parameterization, the quality of the meteorological data used to drive the model and20

the accuracy of the BB emission dataset used to introduce such events. Moreover,
the lofting of the resulting emissions due to the increased buoyancy of the hot air from
the burning process significantly increases injection heights (e.g. Kahn et al., 2007;
Labonne et al., 2007), thus having the potential to affect long-range transport. How-
ever, recent sensitivity studies performed with CTM’s investigating the effect of boreal25

fire emissions on air quality in North America are somewhat inconclusive concerning in-
jection heights. Some of these studies have found this parameter to be important (e.g.
Colarco et al., 2004; Leung et al., 2007; Turquety et al., 2007), whereas others place
more emphasis on the temporal variability in the emission dataset employed (Chen et
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al., 2009). The present study contributes towards this debate by examining the effects
of various model parameters on simulating the transport of BB plumes out of southern
Africa and the chemical processing within such plumes near EA during the WAM. In-
deed this region exhibits unique meteorological behaviour (Nicholson and Grist, 2003)
in conjunction with high BB intensity during the season June-July-August (JJA), which5

introduces different conditions compared to the regions used in the previous studies.
In Sect. 2 we describe the model configuration used and the sensitivity studies that

have been performed for this study. In Sect. 3 we highlight the differences in the
monthly variability in the concentrations of CO and O3 (hereafter referred to as [CO]
and [O3], respectively) over the Gulf of Guinea that occur between the various sen-10

sitivity studies, and examine the effects of altering model parameters associated with
introducing BB into the CTM. In Sect. 4 we compare co-located model output against a
host of different in-situ measurement data relevant for the lower to mid troposphere to
assess the performance of the model and examine which model parameters have the
largest influence. In Sect. 5 we present trajectory analyses to determine the origin of15

air entering the AMMA measurement region during the WAM and finally, in Sect 6, we
present our conclusions and make recommendations for future studies.

2 Model description

2.1 Experimental set up

The global CTM used in this study is the TM4 AMMA model, which adopts a horizon-20

tal resolution of 3◦×2◦, has 34 vertical levels up to 0.1 hPa and is driven by 6 hourly
European Centre for Medium range Weather Forecasting (ECMWF) meteorological
analysis data. The main features are described in Williams et al. (2009a), apart from
a small number of modifications, of which a brief summary is given here. The het-
erogeneous rate data used for accounting for the scavenging of soluble trace gases25

into cloud droplets has been updated, where wet deposition is now also included for
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both methylglyoxal and the lumped aldehyde tracer that is included in the modified
CBM4 mechanism to account for higher aldehydes (C2 and above, Houweling et al.,
1998). The parameterization of Heymsfield and McFarquar (1996) has been included
for the description of the microphysical properties of cirrus particles which provides
the available cross sectional area of the ice particle field for all grid cells containing5

ice water content above 10−10 kg m−3. This cross sectional area is subsequently con-
verted into a surface area density (cm2/cm3) using a scaling ratio of 10, which has
recently been estimated for non-homogenous randomly shaped particles (Schmitt and
Heymsfield, 2005). The effective radius of the ice particles is calculated by using the
cross-sectional area in the parameterization of Fu (1996), which has been validated10

against data from a number of different measurement campaigns both in the tropics
and mid-latitudes (Heymsfield, 2003). These parameterizations replace the fixed ice
particle size of 50 µm previously included in TM4 AMMA. The corresponding surface
area density available from cloud droplets has also been modified using a fixed cloud
droplet radius of 8 µm. These micro-physical properties for these particles are then15

used for calculating the conversion of N2O5 into HNO3 on both types of surface ac-
cording to the approach outlined in Jacob (2000). This improvement in the description
of the available surface area density and an update of the relevant uptake parameters
has been shown to reduce the heterogeneous conversion of N2O5 compared to the
fixed values adopted in the previous version of TM4 AMMA, leading to increases in an-20

nual means of mid to upper tropospheric [O3] of between ∼3–5% and [NO3] of between
∼25–50% (Williams et al., 2009b).

For the anthropogenic and biomass burning emissions we retain the inventories from
the EU project entitled “Reanalysis of the TROpospheric chemical composition over the
past 40 years” (RETRO, http://retro.enes.org/) and the Global Fire Emissions Database25

version 2 (GFEDv2, van der Werf et al., 2006) as used in Williams et al. (2009a). Due
to the NH3 emissions being currently unavailable from the GFEDv2 dataset we adopt
the 5-year average for the period 1998–2002 from the GFEDv1 dataset as used in re-
cent intercomparison studies (Stevenson et al., 2006). For this study, we modified the
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application of the BB emissions in the tropics between 20◦ N–20◦ S by increasing the
maximum injection height to 2 km as suggested by recent satellite observations of BB
plumes (Labonne et al., 2007). This results in ∼50% of the emissions being injected
between 0–1 km and ∼50% being injected between 1–2 km. Moreover, the tropical BB
emissions are given a daily cycle to mimic the increased burning in the afternoon, which5

has been observed from a combination of different satellite instruments that have stag-
gered overpass times (e.g. Boersma et al., 2008) and geo-stationary platforms (e.g.
Giglio, 2007; Roberts et al., 2009). Placing such a constraint on the daily emissions
has been found to be important with respect to capturing (e.g.) the correct distribution
of CO in the lower troposphere (LT) (see e.g. Chen et al., 2009).10

2.2 Definition of the sensitivity studies

Here we define a number of sensitivity studies for the purpose of quantifying the impor-
tance that regional BB emissions from Africa have on the composition of the LT over
(near) the Gulf of Guinea during the WAM. Moreover, we also assess the influence
of altering the vertical and temporal distribution of BB emissions on the long-range15

transport of pollutants out of the African continent by adopting different approaches for
introducing such emissions into TM4 AMMA. An overview of the complete set of sim-
ulations included in the study is given in Table 1. The baseline simulation (hereafter
referred to as FULL) applies BB emissions for all regions using monthly averaged emis-
sion inventories from the GFEDv2 database (van der Werf, 2006). Two further simula-20

tions are defined where we turn off all BB emissions sequentially from southern Africa
(40◦ S–0◦ N, 20◦ W–40◦ E) and Guinea (0–10◦ N, 20◦ W–40◦ E) (hereafter referred to as
NOSAFR and NOGUIN, respectively), where the seasonality exhibited in the GFEDv2
BB emission inventory for these two regions is similar to that shown in Bian et al. (2007)
(i.e. peaks in the BB emissions occur in February and September for the NH and SH,25

respectively). For the Sahel (10◦ N–20◦ N) and the Sahara (20◦ N–40◦ N) regions, the
annual BB emission fluxes are low therefore their influence is assumed to be negligible
during the WAM. The trace gases whose emission fluxes are subsequently reduced
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when turning BB emissions off are CO, NOx, NMHCs, SO2 and NH3.
To explore the effect of temporal variability of the BB emission fluxes, a simulation

is performed using the GFEDv2 8-day emission inventory (van der Werf et al., 2006)
(hereafter referred to as FULL 8day), where the flux estimates are updated every 8
days resulting in changes to the BB emission fluxes 3–4 times every month. Moreover,5

the cumulative sum which is introduced into the model between the monthly and 8-
day GFEDv2 inventories may be slightly different as a result of coarsening from the
1◦×1◦ on which the inventory is provided onto the horizontal grid of 3◦×2◦ defined in
TM4 AMMA.

To investigate the sensitivity of long-range transport and in-situ O3 formation on the10

injection height of the BB emissions, we define a simulation where the maximum in-
jection height is doubled compared to the FULL simulation (hereafter referred to as
HIGH IH). HIGH IH places 50% of the emissions between 0–2 km, ∼25% between the
2–3 km and ∼25% between the 3–4 km, similar to the recommendations by Lavoue et
al. (2000) for sub-tropical regions. Moreover, these heights are all typically still within15

the boundary layer over tropical BB regions as suggested by Labonne et al. (2007)
for southern Africa, where the application of the daily cycle ensures that the boundary
layer height is well developed when the majority of the emissions are injected (in the
afternoon).

Since the estimation of CO emissions from BB depends on the methodology and20

type of data product used, significant uncertainties exist between different inventories
(e.g. Ito and Penner, 2005; Monks et al., 2009). We therefore define another sensitivity
test where the emission of CO from BB is increased by 50% in southern Africa during
JJA in order to increase its atmospheric lifetime during the WAM (hereafter referred to
as HIGH CO). This results in an increase of 21.6 Tg CO over the season for 2006.25

Finally, we define a simulation where we increase the anthropogenic emissions re-
leased in Africa by 8.4% to account for the rapid growth of urban conurbations since
2000 (hereafter referred to as HIGH ANTH). The annual growth rate in anthropogenic
emissions is highly uncertain due to the lack of accurate emission data therefore an in-
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crease of 1.4% per year for African cities is used as observed from the increase in NOx
for Cairo (van der A et al., 2008). This leads to increases in CO and NOx of 0.78 Tg
CO and 7.4×10−2 Tg N for JJA, respectively.

3 The influence of regional biomass burning on tropospheric composition
between 3◦ W–6◦ E5

In this study we utilize the same 2-D cross section adopted for the AMMA Model In-
tercomparison Project (AMMA-MIP, Williams et al., 2010), which contains averages
of tracer concentrations between 3◦ W–6◦ E for a latitude range of 20◦ S–40◦ N. This
2D cross section includes the Cotonou measurement site (6.2◦ N, 2.2◦ E), at which
ozonesonde observations were made during 2005 and 2006 (Thouret et al., 2009),10

and also the location where instrumented aircraft flights were conducted during the
AMMA measurement campaign (e.g. Reeves et al. 2010). The tracer fields are writ-
ten out every three hours, which are then averaged to produce both monthly and daily
values for the analysis presented here. In order to differentiate between air that orig-
inates from southern Africa, local convection and the background we also included a15

set of chemically passive tracers. These “region” tracers are given a fixed atmospheric
lifetime of 20 days, where concentrations are fixed at 100 pptv below 850 hPa (over
land) for both of the regions used in the study. For grid cells which contain both land
and ocean a scaling is applied, where the fixed concentration is weighted with the land
fraction. By correlating “peaks” in CO and O3 with the respective passive tracers we20

examine the variability of transport into the region to determine whether using 6-hourly
updates of the meteorological fields is sufficient.

3.1 Monthly comparisons

Figures 1 and 2 show the distribution of tropospheric CO and O3 in the 2-D cross-
section for the FULL simulation, along with the percentage differences calculated for25
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both the NOGUIN and NOSAFR simulations for each month during JJA, respectively.
Examining the tropospheric distribution in the FULL run for both CO and O3 it can be
seen that the maximum values typically occur around 0–5◦ S between 700–850 hPa
for both trace species. This maximum has been shown to occur at similar locations
for a range of different CTM’s which employ various combinations of parameteriza-5

tions for convective and advective transport processes, different chemical schemes
and a different BB emission inventory (Williams et al., 2010). The location of this max-
imum corresponds to the mean position of the AEJ-S for this year as shown in Mari et
al. (2008).

Analysis of the emission budgets during JJA for the tropics and subtropics (calculated10

as the emission released between 34◦ N–34◦ S across all longitudes) shows that the
NOGUIN (NOSAFR) simulation exhibits reductions of ∼0.4% (∼17.5%) in emitted CO,
∼<0.1% (∼5.8%) in NOx, ∼0.2% (∼0.3%) in NMHC and very small differences in both
SO2 and NH3. This causes reductions in the tropical tropospheric burdens of CO
and O3 below 500 hPa of ∼1.4% (∼7.5%) and ∼0.3% (∼3.2%), respectively, where15

the longer atmospheric lifetime of CO means there is an effect from the proceeding
months. In part, the reduction in the in-situ formation of tropospheric O3 is due to
a decrease in resident [NO2] of between ∼50–60% (not shown) due to suppressed
[PAN]. The corresponding difference plots demonstrate that ∼40–50% of the maximum
values of CO and O3 in the 2-D transect occur as a direct result of BB emissions from20

southern Africa, where the most significant effects occur in the LT below 500 hPa. It
can be seen that the influence of BB from southern Africa extends far inland over West
Africa reaching ∼15◦ N, thus influencing the southern coast and well into the Sahel
region (see Sect. 4), although the largest differences occur between 5◦ S–5◦ N. Thus,
BB emissions from southern Africa have a strong influence on the oxidative capacity of25

the troposphere over EA (where [OH] is typically governed by [O3]), especially for the
LT.

For the FULL 8day simulation (not shown) we found a net decrease in the emission
of CO and NOx between 34◦ N–34◦ S (0–34◦ S) of ∼6% (∼10%) and ∼1.6% (∼3.5%),
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respectively. Comparing the corresponding monthly means between the FULL 8day
simulation and the FULL simulation revealed that the differences in both [CO] and [O3]
are limited to <10% and change throughout JJA. For brevity we refer the reader to the
next section where we show direct comparisons between the two simulations and to
Sect. 4, where further details are provided.5

3.2 Daily mean variations between 20◦ N and 20◦ S

Figure 3 shows Hovmöller diagrams of the daily means of [CO] and [O3] along the 2D
north-south transect during JJA at 650hPa, which corresponds to where the largest
variability occurs in the O3 observations (see next section). Each daily mean is an
average taken between 3◦ W–6◦ E. This illustrates the intermittent character of CO and10

O3 around EA. Figures 4a and b show the variability in the daily mean mixing ratio for
the same trace gas species for the various sensitivity simulations for 4–6◦ S and 6–8◦ N
at ∼860 hPa and ∼670 hPa, respectively. These two latitudinal averages were selected
(i) to correspond to the region where the maximal concentrations for both [CO] and [O3]
occur, as shown in Figs. 1 and 2, and (ii) to be directly over the Cotonou measurement15

site from which ozone sondes were launched, as well as corresponding to the region
where selected flights from the BAe-146 aircraft occurred during the AMMA measure-
ment campaign. The two selected altitudes are representative of the LT and the middle
troposphere (MT), where the “extreme” [O3] was observed (Thouret et al., 2009).

When combined, Figs. 3 and 4 exemplify the large fluctuations that occur in the daily20

values of these trace species, and that are most pronounced in the SH. Moreover, the
top right panels of Fig. 3 demonstrate unambiguously that BB emissions from southern
Africa cause the large fluctuations and dominate the composition of the tropical tropo-
sphere in the 2-D transect for this season. This is in agreement with previous findings in
the literature regarding the effects of BB on this region (e.g.) Sauvage et al. (2006). In25

Fig. 4, a high correlation is seen between the variability in the southern Africa passive
tracer (S Afr) and CO for both locations, where the “pulsing” effect occurs due to varia-
tions in the transport of air from southern Africa. Moreover, the “break” period identified
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by Mari et al. (2008) can also be clearly seen in [CO] and [S Afr] between 3–8 August
(Julian Days (JD) 215–222), as well other periods during July. For BB emissions from
the Guinea region the most important differences occur during August in the SH, in line
with the differences shown in (e.g.) Fig. 2.

For the simulation which adopts the 8-day inventory (FULL 8day), the leftmost panels5

of Fig. 3 show that there are generally increases in both [CO] and [O3] in the SH
as compared with those that adopt the monthly inventory (FULL), with the notable
exception of 29 July–3 August (JD 210–215) around 10–20◦ S. Figure 4a shows that
at lower altitudes the daily mean values change as the season progresses, where
higher (lower) concentrations are seen in the FULL run for June (August). For the10

HIGH IH run, the increased injection height results in a marginal increase in [CO] being
transported out of the source region in the SH (e.g. around JD 220) when compared to
the FULL 8day simulation. Altering the temporal variability of emissions from monthly
to 8-day averages introduces a much larger effect than increasing the injection height,
supporting the conclusions of Chen et al. (2009).15

Analysis of the chemical budgets shows that the annual tropical tropospheric CO
(O3) burden increases (decreases) by 3.5% (1%) compared to the FULL 8DAY run as
a result of using the enhanced injection heights. Hence it is still a non-negligible ef-
fect although such injection heights would not be applicable to all burning events and
therefore the result should be considered a maximal effect. Comparing the distribu-20

tion of CO in Fig. 3 for the FULL, FULL 8day and HIGH IH runs against the composite
assembled from the Measurements Of Pollution In The Troposphere (MOPITT) instru-
ment shown in Mari et al. (2008) reveals that the location of the maximum [CO] in
TM4 AMMA simulations does not extend far enough northward over the Equator, re-
gardless of the changes in the temporal or vertical distribution of the BB emissions.25

However, the increase in [CO] between July and August observed by MOPITT is cap-
tured by the model indicating that the seasonality of the GFEDv2 monthly and 8-day
inventories seems to be correct, and that the applied meteorological analyses from
ECMWF may have problems in positioning the meteorological equator correctly with
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respect to latitude. For instance, recent assimilation of soundings taken as part of the
AMMA campaign into ECMWF analyses results in the AEJ-S being shifted northwards
due to modification of the wind fields (Agusti-Panareda et al., 2009) which would help to
improve the comparison of [CO] in the MT presented here. We expand the discussion
on this in Sect. 5.5

Finally, the HIGH CO run shows that a significant increase occurs for [CO] as would
be expected considering the increase in the BB emission flux. This increase extends
into West Africa (6–8◦ N), where an increase in the background concentration occurs
for CO especially for the LT (see Sect. 4.2). However, at ∼650 hPa this increase in CO
does not extend the transport northwards, resulting in no significant improvement with10

the MOPITT composite shown in Mari et al. (2008). For [O3] corresponding decreases
occur in the SH (see JD 210), whereas in the NH the differences are rather negligible.

4 Measurements against model results

Here we compare co-located model output against a host of different in-situ measure-
ments representative of the LT in both Equatorial and southern Africa during the period15

of interest. The aim is to assess possible short-comings in the model performance
for Africa near source regions and for locations influenced by long-rang transport of
BB plumes, as well as to investigate whether the daily and monthly variability can be
captured with a large-scale CTM. Moreover, we also assess some improvements due
to the model modifications by comparing the sensitivity studies.20

4.1 Regional comparisons in southern Africa

During 2006 the MOZAIC program (Measurement of OZone, water vapour, carbon
monoxide and nitrogen oxides by airbus in-service AIrCraft) measured tropospheric
profiles of [CO] and [O3] during take-off and landing of passenger aircraft from Wind-
hoek, Namibia (22.5◦ S, 17.5◦ E). Measurements were made during both day and night25
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thus (partly) capturing the effects of the daily cycle imposed on the BB activity and diur-
nal variations in photochemical activity. Figure 5 shows the monthly mean comparisons
of tropospheric [CO] between the MOZAIC measurements and the different simulations
for June, July and August. The top three figures relate to simulations performed using
the monthly inventory and the lower three figures using the 8-day inventory. Compar-5

ing the 1-σ variability associated with the measurements (green lines) for each month
shows that the variability in the LT increases as the regional BB activity increases.
The comparison to model results shows that there is a significant under prediction of
tropospheric CO at Windhoek by the model during the entire season. Similar com-
parisons made for seasons March-April-May (MAM) (September-October-November10

(SON)) (not shown) result in smaller (larger) discrepancies for CO than for JJA, in line
with the changes in the intensity of the seasonal BB cycle in southern Africa. These
seasonal differences provide evidence that the discrepancy is probably due to either
the seasonal emission of CO in southern Africa in the BB inventory not being opti-
mal, that the temporal and/or geographical distribution is not accurate or that there is a15

missing source term in the model such as additional biogenic production. Although we
have shown that increasing the total flux improves the agreement significantly in July
(bottom middle panel of Fig. 5), it is not possible to give a detailed quantification of the
importance of each of these potential causes in the current study. Moreover, it should
be noted that we find that increasing the CO flux across the entire region degrades20

comparisons in EA (see Sect. 4.2).
The NOSAFR run in Fig. 5 shows that emissions from regional BB sources account

for ∼25% of the CO in the LT at Windhoek, meaning ∼75% occurs as a result of
other emission sources (e.g. nearby urban centers), in-situ chemical formation (e.g.
HCHO photolysis) and long-range transport (e.g. from South America). Comparing the25

FULL 8day simulation shows that there is a decrease in the monthly mean [CO] for
the lower levels by a few ppbv, thus slightly degrading the quality of the comparisons.
For the HIGH IH simulation increases of a few percent occur in the MT between 600–
750 hPa. Finally, the HIGH CO run leads to a significant improvement in the agreement
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below 600 hPa for all months shown. The similarity in the CO profiles of the different
model simulations above 600hPa reveals that this increase is limited to the LT. An ad-
ditional comparison performed using the output from the TM5 model (Krol et al., 2005)
ran in zoomed mode (1◦×1◦) over Africa using 3 hourly ECMWF meteorological data
also did not show any significant improvement in the quality of the comparison for these5

MOZAIC profiles (V. Huijnen, personal communication, 2009). Therefore the coarsen-
ing of the BB emission inventory onto the 3◦×2◦ grid adopted in this study and the
update frequency of the wind fields do not seem to be important contributing factors
towards the disagreement shown in Fig. 5. In summary, the improvements shown in
the comparisons of the tropospheric profiles for the HIGH CO run again provide strong10

evidence that the emission of CO from southern Africa is too low during 2006.
When performing similar comparisons against the corresponding tropospheric O3

profiles from the MOZAIC database the agreement is much better (c.f. Fig. 8 in Williams
et al., 2009a). For all months during JJA, the NOSAFR run under-predicts tropospheric
[O3] in the lower atmosphere by ∼5 ppbv (∼15% of that which is measured), whereas15

the FULL simulation tends to over-predict for July and August by a few ppbv, although
the profile shape is captured quite well. Comparing the FULL 8day simulation shows
that there is only a marginally better agreement with the observations. Although the
agreement for O3 is also dependent on the chemical mechanism employed, this sug-
gests that for NOx the BB emission estimates provided in the GFEDv2 inventory are20

rather good for this year and do not need to be increased as with CO. For the other sen-
sitivity studies no significant differences occur compared to the FULL 8day run, apart
from slight increases between 600–700 hPa in the HIGH IH.

Unfortunately, the only other profile information available for southern Africa are a
limited number of ozone sonde measurements (at Irene, South Africa (25.9◦ S, 28.2◦ E)25

and Malindi, Kenya (3.0◦ S, 40.2◦ E)) which were either not operated during July and
August or the measurements stopped at the start of 2006. This emphasises the need
for expansion of the network of ozone soundings, initiation of ground-based measure-
ments for (e.g.) CO or the continuation (expansion) of the MOZAIC flight network
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within the tropics and especially central and southern Africa. Such measurements can
be used to constrain the inter-annual variability in BB emissions from this dominant
region, validate large scale models and aid (e.g.) the retrieval of total tropical ozone
columns (e.g.) de Laat et al. (2009).

4.2 Comparisons in Equatorial Africa5

Figure 6 shows comparisons of the monthly mean profiles of tropospheric O3 from ra-
dio sonde measurements at both Cotonou (6.2◦ N, 2.2◦ E) and Nairobi (1.3◦ S, 36.8◦ E)
against co-located model output for the FULL, NOGUIN and NOSAFR simulations.
Both stations are part of the SHADOZ (Southern Hemisphere Additional Ozoneson-
des) network for the tropics (Thompson et al., 2003). Moreover, both stations are also10

situated near large urban conurbations, although Cotonou is near the coast and there-
fore subject to more varying types of circulation whereas Nairobi is much further east
and not affected by the same dynamics (see Sect. 5).

The comparisons for Cotonou show that whilst over estimating the surface concen-
trations, TM4 AMMA has difficulty in simulating the increase in [O3] observed with15

height, leading to under predictions of between ∼30–40% at altitude levels between
600 hPa and the tropopause. It should be noted however that the measurements of
this type have been shown to have an accuracy of ±(5–10)% (e.g. Deshler et al.,
2008). The “bulge” observed at Cotonou at ∼700 hPa in the monthly mean for Au-
gust is due to an “extreme” event which occurred on the 13 and 14 August, where20

between 100–120 ppbv of [O3] was observed (Thouret et al., 2009). This event was
also observed in in-situ aircraft measurements performed in the framework of AMMA
(Andréas-Hernández et al., 2009) off the coast above Ghana (∼6◦ N, ∼1◦ W). Previ-
ously, Sauvage et al. (2005) have shown that the MOZAIC climatology for Lagos, Nige-
ria (6.6◦ N, 3.3◦ E) exhibits similar incidental increases in the MT suggesting such en-25

hancements are an annually recurring phenomenon during the WAM. These authours
concluded that although such enhancements are sporadic in nature (i.e.) not continu-
ous throughout the whole of August, such events also exhibit a degree of inter-annual
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variability, where measurements taken in different years have observed increases in
MT O3 in 28–45% of cases during the WAM (Sauvage et al., 2007). For 2006 intra-
seasonal variability is also seen when examining individual soundings throughout Au-
gust 2006 (Thouret et al., 2009). This suggests that the transport pathways into the
region change markedly on a daily basis as identified for 2006 by Mari et al. (2008).5

The enhancement event of 13–14 August 2006 is not captured well by TM4 AMMA.
Rather, the maximum [O3] values due to BB in southern Africa occurred further south
(c.f. Fig. 3). Comparing the NOGUIN profile at Cotonou with the observations shows
that the effect of BB activity between 0–10◦ N on the tropospheric O3 profile is insignif-
icant during the WAM, whereas comparing the corresponding NOSAFR profile shows10

there is a reduction in tropospheric [O3] below 800 hPa of ∼30–40%. This indicates that
the transport determined by the ECMWF meteorology does not introduce polluted air
from southern Africa directly into the MT at this latitude but rather into the LT, as shown
in Fig. 4. To examine the origin of air reaching the Cotonou site on these extreme
days in more detail we performed back-trajectory simulations which are presented in15

Sect. 5. Finally, an additional comparison was again performed against output from the
TM5 model using the configuration described in Sect 4.1. No significant improvement
in the quality of the comparison at Cotonou occurred in the MT (V. Huijnen, personal
communication, 2009) again indicating that the deficiency in transport in TM4 AMMA is
not due to abrupt changes in circulation which are missed as a result of using 6 hourly20

meteorological fields.
The comparisons for Nairobi show that the monthly mean model profiles agree better

with the measurements for this location, especially for July and August in the LT to MT.
This is in spite of the sampling frequency at the location being lower than at Cotonou
for this season. However, the variability in the monthly mean profile is also much25

lower than at Cotonou as shown by comparing the magnitude of the 1-σ variability of
the means for both sites. This has also been observed in the MOZAIC climatology
when comparing the monthly means taken from Lagos and Nairobi (Sauvage et al.,
2005). Interestingly, the largest increase in O3 during August occurs much higher up in
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the troposphere, between 300–400 hPa, suggesting an intrusion of air rich in O3 from
the subtropical jet stream (e.g. Zachariasse et al., 2000). There is also a separate
peak in the LT around 700 hPa. Comparing the NOSAFR profile reveals that the effect
of regional BB close to the launch site is insignificant when adopting the GFEDv2
emission inventory. This provides at least some confidence that TM4 AMMA does not5

exhibit an underestimation in LT [O3] in East Africa similar to that found at Cotonou.
Comparing the FULL 8day, HIGH IH and HIGH CO simulations at both measure-

ment sites reveals no significant improvement in model performance (not shown), even
though the location of the Nairobi sounding is within the SH. For Cotonou this is due to
the differences not being seen as far north as the measurement site. Similar compar-10

isons for the HIGH ANTH run (not shown) only shows increases in O3 of a few percent
in the lowest kilometer which agrees with the conclusions of Sauvage et al. (2007)
related to MOZAIC profiles taken in July at Lagos, Nigeria (6.6◦ N, 3.3◦ E) during 2003.

The top panels of Fig. 7 show comparisons of tropospheric CO and O3 measured
in-situ on board of the BAe-146 aircraft during a flight on 13 August 2006, with co-15

located model output and the altitude at which the measurements were made. The
bottom panels show the corresponding flight track of the aircraft, where a colour scale
is provided to show the location where the extreme events in each respective trace gas
occurred. It can be seen that during this day the aircraft encountered an air mass with
very high [CO] and [O3] near the coast at about 8h50 on the southward flight segment20

(at ∼3.5 km) and at about 10:00 h on the return northward flight segment (at ∼2.5 km).
These plumes were encountered at similar altitudes to where the maximum [O3] was
seen in the sondes, and thus suggest the same source. The large concentrations in
both species suggest an aged BB plume, where the photochemical production of O3
has formed over previous days (Jost et al., 2003). Moreover, corresponding acetoni-25

trile measurements, which act as a “marker” for BB, also show associated increases
(Reeves et al., 2010). All of the sensitivity runs fail to capture this enhancement except
the NOSAFR run, whose relative increases are of the order of ∼10–20% compared
to the ∼200–300% increases observed. For the majority of sensitivity studies there
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appears to be an anti-correlation for both CO and O3 between the model and mea-
surements during these enhancement events.

For locations further inland, e.g. before 9h and after 10:15 h , there is an anti-
correlation between CO and O3 in the observations. The corresponding acetonitrile
signature is low (not shown) indicating air-masses which are more representative of5

the background. Here, the agreement of all simulations with the observations becomes
much better, especially for O3. Again, the exception is the NOSAFR simulation, which
shows that southern BB has a large influence on the tropospheric background between
8–10◦ N and introduces the most variability with respect to CO, contributing between
∼30–80% of [CO] simulated in the FULL run. This is in spite of the weak northerly10

transport shown in Fig. 3. For [O3] the contribution from southern BB is typically ∼20–
30%, this reduction is partly due to less transport of ozone pre-cursors such as PAN
into the region (not shown). For most of the other runs shown the model generally
over-predicts [O3] whenever the aircraft is at low altitude. One possible reason is the
under-estimation in dry deposition over vegetated areas, which has been shown for15

TM4 AMMA in previous studies (Williams et al., 2009a).
Figure 8 shows a corresponding comparison for the measurements taken on the 14

August. Comparing the location of the flight tracks it can be seen that the flight path is
quite similar to that of the 13 August, apart from the latitudinal range covered. More-
over, the background [CO] and [O3] are also similar, where an anti-correlation between20

CO and O3 in the measurements is again quite evident. The agreement for each of the
trace species is consistent with that shown for similar locations in Fig. 7 in that the [O3]
is higher by ∼100% in the model. Again the NOSAFR simulation seems to reproduce
much of the large scale variability in O3, albeit with a smaller amplitude, i.e. the broad
peaks at 05:00 h, 07:30 h and 08:40 h, which correspond with measurements made be-25

tween 2–3 km. This suggests either the photochemical processing of the plume maybe
insufficient in the CTM or that the timing and/or emission flux of the GFEDv2 biomass
burning inventory in the NH is not optimal.

When comparing the other sensitivity studies it can be seen that for the FULL 8day
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and NOGUIN runs there is no significant improvement, as seen for the MOZAIC com-
parisons shown in Fig. 5 and the ozone sonde comparisons shown in Fig. 6. For the
HIGH CO run (not shown) there is a significant degradation in the quality of the com-
parisons with respect to CO, as a result of the background increasing ∼50ppbv.

5 Trajectory calculations5

The extreme events seen during August in both the sonde and aircraft measurements
near the southern coast of West Africa suggest an air mass that has been in recent con-
tact with BB emissions (similar to that suggested in Andréas-Hernández et al., 2009).
However, we have shown that the northward transport of polluted air from southern
Africa is constrained to ∼2–4◦ N for the MT in TM4 AMMA (c.f. Fig. 3), even though10

the model captures the “break” phase in northward transport (Mari et al., 2008). One
governing factor related to the long-range transport of polluted plumes is the ECMWF
meteorological analysis data which are used to drive the CTM. An independent way to
check if the ECMWF operational analysis describes the large scale transport correctly
is to calculate trajectories, whose origins are instructive as to what causes the under-15

estimation in the CTM. Here we present a number of 10-day trajectory calculations
initiated (a) in the region where the most intense BB activity occurs during August,
(b) around the location at which the ozone soundings were launched and (c) along
the aircraft flight paths shown in the preceding sections. For this purpose we applied
the TRAJKS trajectory model (Scheele et al., 1996), which uses the same 6 hourly20

ECMWF operational dataset as that used to drive TM4 AMMA, except at a 0.5◦×0.5◦

resolution and compares favorably with other trajectory models (Stohl et al., 2001).
Figure 9a–c shows the strength and distribution of CO emissions from Africa during

August 2006 as given in the monthly GFEDv2 inventory, along with 10-day forward
trajectory calculations initiated on the 4 August at ∼800 hPa and finishing on the 1425

August. The end date corresponds with the date on which the “extreme” event was
observed. The bulk trajectories are placed in the latitude range of 10–15◦ S between
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15–20◦ E and 25–30◦ E, respectively, with both being initiated 1.5 km above the ground
to account for rapid convective uplift of (e.g.) CO. From Fig. 9b it can be seen that once
the air masses travel westwards they loose altitude and travel through the LT towards
the north-west. Although some do reach the southern coast of West Africa they are at
a much lower altitude than the “peak” which is observed at ∼650 hPa. This explains5

the NOSAFR profile shown in Figs. 4 and 6. Fig. 9c shows that the BB which occurs
in Central Africa is transported northwards and lifted by convective mixing towards the
equator as found in Barret et al. (2008). Additional trajectories initiated for various days
during August between 0–5◦ S and 10–20◦ E (not shown) all follow a north-easterly
direction. Therefore, the ECMWF meteorology predicts that air-masses which originate10

near regions exhibiting BB do not travel directly into the MT around 6◦ N.
Figure 10a and b show 10-day back trajectory calculations starting on 3 and 14 Au-

gust at ∼600 hPa from the Cotonou measurement site (i.e.) where elevated [O3] was
measured. These dates correspond to ozone sonde measurements that give profiles
both with (14 August) and without (3 August) an enhancement in MT O3 (Mari et al.,15

2008; Thouret et al., 2009). It can be seen that there are distinct differences between
the air mass histories on these two days. For the 3 August the air at this altitude origi-
nates from either the LT in the Gulf of Guinea or from the Saharan region to the north.
For the 14 August the air at ∼600 hPa originates to the west of the measurement site,
where it passes over eastern Nigeria a few days prior to reaching Cotonou. This sug-20

gests that the enhanced MT O3 observed in the sondes is due to the northerly transport
of BB polluted plumes over the Gulf of Guinea which are present in the MOPITT com-
posite (Mari et al., 2008) but not captured in the model (c.f. Fig. 3).

Figures 11a and b show the corresponding 10-day back trajectories initiated on the
13 August along the flight path of the BAe-146 aircraft at the 9 h and 10 h, respectively25

(c.f. Fig. 7). It can be seen clearly that, again, the air circles the region anti-cyclonically
for a few days preceding the measurement. Again, when considering the large [CO] ob-
served in the MOPITT composite (Mari et al., 2008), the yellow pressure contours show
that the height at which the air-masses reside coincides with highly polluted air-masses
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a few days before the measurement. Similar back trajectory calculations performed by
Andréas-Hernández et al. (2009) have shown that polluted air sampled by the DLR
aircraft originate from the MT (∼500 hPa) to the west over Cameroon. Back trajecto-
ries performed for the flight shown in Fig. 8 (not shown) reveal that in this case the air
predominantly originates from the LT in North Africa, gradually rising as it travels south5

west passing over the Sahel and Saharan regions (not shown), resulting in [CO] and
[O3] which are representative of the background. The signature in O3 in the NOSAFR
run corresponds with measurements taken at higher altitudes where the effect of de-
position becomes less important. Moreover, such an event is also not present in the
alternative L3JRCv2 inventory of Liousse et al. (2004), which has been used for both10

global CTM simulations during 2006 (Williams et al., 2010) and meso-scale transport
studies (Real et al., 2009).

Finally, we also performed the trajectories shown in Figs. 9–11 using the meteo-
rological dataset available for August 2006 which have assimilated the AMMA radio
soundings (Agusti-Panareda et al., 2009). There is a strong impact on including the15

new measurements on the location of the AEJ in the ECMWF analysis. The trajectory
results presented here show that the inclusion of the additional measurements leads
to significant differences in the origin of the trajectories. For brevity we do not show
all the corresponding trajectories here but only those which exhibit the most interesting
differences. Figure 12 shows the corresponding backward trajectories as those shown20

in Fig. 10b (from Cotonou on the 14 August) and 11a (from the BAe-146 flight path
at 09:00 h on 13 August) using the updated meteorological fields. For the Cotonou
sounding the origin of the air-mass is either directly from southern Africa or the LT
of the Atlantic Ocean, which we have shown to be affected by westerly transport of
BB plumes (Fig. 4). For the BAe-146 flight, the air circulates in the same direction as25

that shown in Fig 11a and passes nearer Cameroon, therefore near the region where
the BB plumes are transported northwards inland (c.f. Fig. 9c). Moreover, the forward
trajectory calculations corresponding to Fig. 9b and c (not shown) indicate more tra-
jectories impinging on the coast (albeit in the LT) and more trajectories from Central
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Africa passing between ∼5–6◦ N around 500–600 hPa. This implies that the quality of
the CTM simulations would improve if adopting the new meteorological dataset and
also shows the limitations in using trajectory studies in EA in order to explain observa-
tions without corresponding chemical signatures (such as elevations in acetonitrile).

6 Conclusions5

In this study we have investigated the influence that regional biomass burning emis-
sions from southern and northern Africa have on the composition of the lower tropo-
sphere over Equatorial Africa during the West African Monsoon in 2006. By performing
a set of sensitivity studies we have shown that emissions from southern Africa dom-
inate tropospheric composition over the Equatorial Atlantic for this season, and influ-10

ence a large area in the Northern Hemisphere upto ∼15◦ N. When using the GFEDv2
biomass burning emission inventory and 6 hourly ECMWF meteorological fields, the
maximum concentrations of [CO] and [O3] occur between 0–5◦ S during August, which
is more southerly than the distribution observed in satellite measurements. This be-
haviour has also been previously seen when adopting the alternative L3JRCv2 emis-15

sion inventory by Liousse et al. (2004) in a number of different chemistry transport
models (Williams et al., 2009a).

By varying both the temporal distribution and injection heights at which emissions
are introduced we have shown that, although there is little effect near the source re-
gions, temporal variability has a larger effect than the choice of injection height on20

tropospheric [O3] and [CO] in the outflow regions over the Gulf of Guinea. This finding
agrees with the conclusions of the study of Chen et al. (2009) concerning northern bo-
real fires, providing further evidence that, when available, weekly variation in biomass
burning activity should be included in preference to monthly averages when perform-
ing large-scale modeling studies aimed at investigating tropical pollution events and25

the seasonal composition of the tropical troposphere.
For tropospheric CO comparisons of co-located model output against MOZAIC mea-
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surements taken during June-July-August we have shown that the model underes-
timates concentrations near the main source regions. Corresponding comparisons
made with AMMA flight data over Equatorial Africa show that further away from the
main biomass burning emission source the model tends to over-estimate the back-
ground [CO]. Sensitivity tests where the CO flux from biomass burning in southern5

Africa was increased by 50% are somewhat inconclusive, in that the improvements
seen in the tropospheric profile in the lower troposphere near the source regions cause
an associated degradation in the model performance over Equatorial Africa. Thus the
disagreement is most likely due to inaccuracies in either a biomass burning event near
the airport and/or the temporal distribution of the burning activity in the GFEDv2 emis-10

sion inventory, an urban emission source close to the airport or missing sources in the
model such as enhanced biogenic activity. The under sampling of atmospheric compo-
sition for the lower troposphere in southern Africa significantly hinders the assessment
of the accuracy of the GFEDv2 emission inventory when applied in a global chemistry
transport model.15

For tropospheric O3 the profiles simulated in the model near both the source regions
and in East Africa are in fairly good agreement with measurements. For West Africa
there is a significant under-estimation for the middle to upper troposphere as compared
to ozone sonde profiles. For the background, the model typically over estimates the
[O3] measured by in-situ flight data, similar to that seen for CO.20

Finally, using a set of trajectory calculations we have shown that direct transport of
polluted plumes from southern Africa affect the lower troposphere below 800 hPa rather
than the mid troposphere when driving the model with 6 hourly ECMWF meteorolog-
ical analyses. Repeating the trajectory studies using a meteorological dataset which
assimilates soundings taken during August around the region reveals that the ECMWF25

fields change markedly when containing the new information. The upgraded dataset
shows that direct transport of air from southern Africa into the AMMA measurement
region is more probable. Therefore the performance of the CTM is heavily constrained
by the accuracy of the meteorological data applied for the region.
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Table 1. Definition of the various sensitivity studies used to examine the extent to which BB
emissions from different regions of Africa affect lower tropospheric [CO] and [O3].

Name of Run GFEDv2 inventory Details

FULL Monthly All biomass burning emissions active
NOGUIN Monthly Biomass burning emissions removed between

0–10◦ N, 20◦ W–40◦ E
NOSAFR Monthly Biomass burning emissions removed between

0–40◦ S, 20◦ W–40◦ E
FULL 8day 8-day All biomass burning emissions active
HIGH IH 8-day All biomass burning emissions active. Injection height

increased to between 0–4 km above surface, with
50% placed above and below 2 km.

HIGH CO 8-day As for FULL 8day except the biomass burning emis-
sion flux of CO between 0–40◦ S, 20◦ W–40◦ E is in-
creased by 50%
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Figure 1: The influence of regional BB emissions on monthly mean [CO] given in ppbv 4 

along the 2D cross-section taken between 3°W-6°E during June, July and August in 2006. 5 

The distribution of tropospheric CO is shown for the FULL simulation (left column) along 6 

with the differences for the NOGUIN (middle) and NOSAFR (right) simulations. The 7 

differences are calculated for (SENS-FULL)/FULL x 100. 8 

 9 

Fig. 1. The influence of regional BB emissions on monthly mean [CO] given in ppbv along
the 2-D cross-section taken between 3◦ W–6◦ E during June, July and August in 2006. The
distribution of tropospheric CO is shown for the FULL simulation (left column) along with the
differences for the NOGUIN (middle) and NOSAFR (right) simulations. The differences are
calculated for (SENS-FULL)/FULL ×100.
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Figure 2: As for Fig 1 except for O3 given in ppbv. 4 

 5 

Fig. 2. As for Fig. 1 except for O3 given in ppbv.
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 2 

Figure 3: Hovmöller diagrams of the daily mean for [CO] (top) and [O3] (bottom) along the 3 

2D transect averaged between 3°W-6°E. Values are shown for the latitude range 20°S to 20°N 4 

during season JJA 2006. The sensitivity tests shown are FULL, NOGUIN, NOSAFR, 5 

FULL_8day, HIGH_IH and HIGH_CO. The vertical level shown corresponds to ~650hPa. 6 

Fig. 3. Hovmöller diagrams of the daily mean for [CO] (top) and [O3] (bottom) along the
2-D transect averaged between 3◦ W–6◦ E. Values are shown for the latitude range 20◦ S to
20◦ N during season JJA 2006. The sensitivity tests shown are FULL, NOGUIN, NOSAFR,
FULL 8day, HIGH IH and HIGH CO. The vertical level shown corresponds to ∼650 hPa.
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 1 

Figure 4a: Daily mean values of [CO] (top), [O3] (middle) and the passive tracers (bottom) 2 

averaged between 3°W-6°E for season JJA between 4-6°S (left) and 6-8°N (right) at ~ 3 

860hPa (~1.5km height). For the trace gases the colour key is thus; (_) FULL, (_) NOGUIN, 4 

(_) NOSAFR, (_) FULL_8day, (_) HIGH_IH and (_) HIGH_CO, given in ppbv. For the 5 

passive tracers (_) represents Guinea and (_) southern Africa, given in pptv.  6 

 7 

Fig. 4a. Daily mean values of [CO] (top), [O3] (middle) and the passive tracers (bottom) aver-
aged between 3◦ W–6◦ E for season JJA between 4–6◦ S (left) and 6–8◦ N (right) at ∼860 hPa
(∼1.5 km height). For the trace gases the colour key is thus; (green) FULL, (blue) NOGUIN,
(magenta) NOSAFR, (olive green) FULL 8day, (black) HIGH IH and (orange) HIGH CO, given
in ppbv. For the passive tracers (black) represents Guinea and (magenta) southern Africa,
given in pptv.
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 2 

Figure 4b: Same as figure 4a, but at ~670hPa (~3.3km height).  3 

 4 

Fig. 4b. Same as Fig. 4a, but at ∼670 hPa (∼3.3 km height).
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Figure 5: Comparisons of monthly mean tropospheric profiles for CO taken at Windhoek in 3 

Namibia (22.5°S, 17.5°E) against co-located model output from TM4_AMMA for season JJA 4 

during 2006. The mean values from the measurements, and their standard deviations, are 5 

shown in green. The results of six different simulations are shown. The top row shows: FULL 6 

(blue), NOGUIN (red) and NOSAFR (black) simulations. The bottom row shows: simulations 7 

using emissions with 8-daily variability: FULL_8day (blue), HIGH_IH (red) and HIGH_CO 8 

(black). The error bars represent 1-σ deviation from the mean values. 9 

 10 

 11 

Fig. 5. Comparisons of monthly mean tropospheric profiles for CO taken at Windhoek in
Namibia (22.5◦ S, 17.5◦ E) against co-located model output from TM4 AMMA for season JJA
during 2006. The mean values from the measurements, and their standard deviations, are
shown in green. The results of six different simulations are shown. The top row shows: FULL
(blue), NOGUIN (red) and NOSAFR (black) simulations. The bottom row shows: simulations
using emissions with 8-daily variability: FULL 8day (blue), HIGH IH (red) and HIGH CO (black).
The error bars represent 1-σ deviation from the mean values.
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 5 

Figure 6: Comparisons of monthly mean tropospheric radio sonde profiles for O3 (green lines) 6 

taken at Cotonou, Nigeria (6.2°N, 2.2°E) and Nairobi, Kenya (1.3°S, 36.8°E) against co-7 

located model output from TM4_AMMA for month June, July and August 2006. The results 8 

of three different simulations are shown: FULL (blue), NOGUIN (red) and NOSAFR (black). 9 

The error bars represent 1-σ deviation from the mean. 10 

 11 

Fig. 6. Comparisons of monthly mean tropospheric radio sonde profiles for O3 (green lines)
taken at Cotonou, Nigeria (6.2◦ N, 2.2◦ E) and Nairobi, Kenya (1.3◦ S, 36.8◦ E) against co-located
model output from TM4 AMMA for month June, July and August 2006. The number of mea-
surements used for calculating each monthly mean are given within each panel. The results of
three different simulations are shown: FULL (blue), NOGUIN (red) and NOSAFR (black). The
error bars represent 1-σ deviation from the mean.
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Figure 7: Top panel: Comparisons of tropospheric CO (left) and O3 (right) measured on the 5 

BAe-146 against TM4_AMMA output for the 13th August, 2006. The start/end of the flight is 6 

shown as the black dot and the altitude of the aircraft is shown as the red line. The 7 

measurements are indicated by black lines. The results of four different simulations are 8 

shown: FULL (green), FULL_8day (cyan), NOGUIN (blue) and NOSAFR (pink). The 9 

bottom panels show the flight track of the aircraft with colour coding for the CO (left) and O3 10 

measurements (right), respectively. 11 

Fig. 7. Top panel: Comparisons of tropospheric CO (left) and O3 (right) measured on the BAe-
146 against TM4 AMMA output for the 13 August 2006. The start/end of the flight is shown as
the black dot and the altitude of the aircraft (in m) is shown as the red line. The measurements
are indicated by black lines. The results of four different simulations are shown: FULL (green),
FULL 8day (cyan), NOGUIN (blue) and NOSAFR (pink). The bottom panels show the flight
track of the aircraft with colour coding for the CO (left) and O3 measurements (right) in ppbv,
respectively.
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Figure 8: Comparisons of tropospheric CO (left) and O3 (right) measured on the BAe-146 5 

against TM4_AMMA output on the 14th August, 2006. The altitude of the aircraft is shown as 6 

the red line. The colour key is identical to that described for Fig 7. The bottom panels show 7 

the corresponding location of the aircraft for which these measurements occurred. 8 

Fig. 8. Comparisons of tropospheric CO (left) and O3 (right) measured on the BAe-146 against
TM4 AMMA output on the 14 August 2006. The altitude of the aircraft is shown as the red
line. The colour key is identical to that described for Fig. 7. The bottom panels show the
corresponding location of the aircraft for which these measurements occurred.
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Fig 9: Ten day forward trajectories starting from two regions exhibiting intense BB activity in 4 

the GFEDv2 monthly emission inventory, whose distribution is shown in the top panel (9a). 5 

Separate trajectories were initiated at a distance of 1° between 10-15°S and (middle, 9b) 15-6 

20°E and (bottom, 9c) 25-30°E on the 4th August 2006. 7 

Fig. 9. Ten day forward trajectories starting from two regions exhibiting intense BB activity
in the GFEDv2 monthly emission inventory, whose distribution is shown in the top panel (a).
Separate trajectories were initiated at a distance of 1◦ between 10–15◦ S and (middle, b) 15–
20◦ E and (bottom, c) 25–30◦ E on the 4 August 2006. The pressure levels through which each
trajectory passes are indicated: >750 hPa (blue), 700–750 hPa (green), 650–700 hPa (cyan),
600–650 hPa (yellow) and <600 hPa
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Figure 10: Ten day back trajectories ending at the Cotonou launch site (6.2°N, 2.2°E) on 3 

August 3rd (top) and 14th (bottom), 2006. The black arrows indicate one-day time intervals 4 

along the back trajectory. The colour coding also indicates the pressure at which each air mass 5 

travels along the trajectory. 6 

Fig. 10. Ten day back trajectories ending at the Cotonou launch site (6.2◦ N, 2.2◦ E) on 3 (top)
and 14 August (bottom), 2006. The black arrows indicate one-day time intervals along the back
trajectory. The pressure levels through which each trajectory travels are shown using the same
colour key as Fig. 9.
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Figure 11: Ten day back trajectories ending at the location of the BAe-146 aircraft on August 4 

13th at (top) 9am and (bottom) 10am local time. The black arrows indicate one-day time 5 

intervals along the back trajectories. The numbers indicate the pressures at which the air starts 6 

and ends (in paranthesis). The colour coding also indicates pressure. 7 

Fig. 11. Ten day back trajectories ending at the location of the BAe-146 aircraft on 13 August
at (top) 9 a.m. and (bottom) 10am local time. The black arrows indicate one-day time intervals
along the back trajectories. The numbers indicate the pressures at which the air starts and
ends (in paranthesis). The colour coding also indicates pressure.The pressure levels through
which each trajectory travels are shown using the same colour key as Fig. 9.
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Figure 12: Ten day back trajectories using the new ECMWF meteorological dataset which 3 

assimilates additional sounding information taken during AMMA (Agusti-Panareda et al, 4 

2009). The trajectories shown are (top) for the Cotonou measurement site starting on the 14th 5 

August (corresponding with Fig 10b) and (bottom) for the BAe-146 flight on the 13th August 6 

at 9am local time (corresponding with Fig 11a). 7 

Fig. 12. Ten day back trajectories using the new ECMWF meteorological dataset which assim-
ilates additional sounding information taken during AMMA (Agusti-Panareda et al., 2009). The
trajectories shown are (top) for the Cotonou measurement site starting on the 14 August (cor-
responding with Fig. 10b) and (bottom) for the BAe-146 flight on the 13 August at 9 a.m. local
time (corresponding with Fig. 11a).The pressure levels through which each trajectory travels
are shown using the same colour key as Fig. 9.
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